jueves, febrero 22, 2024
InicioNanotechnologySturdy coupling between a photon and a gap spin in silicon

Sturdy coupling between a photon and a gap spin in silicon


  • Haroche, S. and Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

  • Wallraff, A. et al. Sturdy coupling of a single photon to a superconducting qubit utilizing circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article 

    Google Scholar
     

  • Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an structure for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article 

    Google Scholar
     

  • Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Clerk, A. A., Lehnert, Okay. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum programs with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

    Article 

    Google Scholar
     

  • Childress, L., Sørensen, A. S. & Lukin, M. D. Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69, 042302 (2004).

    Article 

    Google Scholar
     

  • Burkard, G. & Imamoglu, A. Extremely-long-distance interplay between spin qubits. Phys. Rev. B 74, 041307(R) (2006).

    Article 

    Google Scholar
     

  • Hu, X., xi Liu, Y. & Nori, F. Sturdy coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

    Article 

    Google Scholar
     

  • Jin, P. Q., Marthaler, M., Shnirman, A. & Schön, G. Sturdy coupling of spin qubits to a transmission line resonator. Phys. Rev. Lett. 108, 190506 (2012).

    Article 

    Google Scholar
     

  • Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Petersson, Okay. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article 

    Google Scholar
     

  • Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    Article 

    Google Scholar
     

  • Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A., and Petta, J. R. Semiconductor spin qubits. Preprint at https://arxiv.org/abs/2112.08863 (2021).

  • Imamoglu, A. et al. Quantum info processing utilizing quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Vandersypen, L. M. Okay. et al. Interfacing spin qubits in quantum dots and donors—scorching, dense, and coherent. npj Quantum Inf. 3, 34 (2017).

    Article 

    Google Scholar
     

  • Samkharadze, N. et al. Sturdy spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    Article 

    Google Scholar
     

  • Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    Article 

    Google Scholar
     

  • Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).


    Google Scholar
     

  • Harvey-Collard, P. et al. Coherent spin-spin coupling mediated by digital microwave photons. Phys. Rev. X 12, 021026 (2022).

    CAS 

    Google Scholar
     

  • Luttinger, J. M. & Kohn, W. Movement of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955).

    Article 
    CAS 

    Google Scholar
     

  • Winkler, R. Spin-Orbit Coupling Results in Two-Dimensional Electron and Gap Programs (Springer, 2003).

  • Kloeffel, C., Trif, M., Stano, P. & Loss, D. Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots. Phys. Rev. B 88, 241405 (2013).

    Article 

    Google Scholar
     

  • Nigg, S. E., Fuhrer, A. & Loss, D. Superconducting grid-bus floor code structure for hole-spin qubits. Phys. Rev. Lett. 118, 147701 (2017).

    Article 

    Google Scholar
     

  • Mutter, P. M. & Burkard, G. Pure heavy-hole flopping mode qubit in germanium. Phys. Rev. Analysis 3, 013194 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Michal, V. P. et al. Tunable gap spin-photon interplay primarily based on g-matrix modulation. Phys. Rev. B 107, L041303 (2023).

    Article 

    Google Scholar
     

  • Bosco, S., Scarlino, P., Klinovaja, J. & Loss, D. Totally tunable longitudinal spin-photon interactions in Si and Ge quantum dots. Phys. Rev. Lett. 129, 066801 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin-orbit interplay in Si and Ge nanowires with totally different development instructions. Phys. Rev. B 97, 235422 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Niepce, D., Burnett, J. & Bylander, J. Excessive kinetic inductance NbN nanowire superinductors. Phys. Rev. Appl. 11, 044014 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, C. X. et al. Magnetic subject resilient excessive kinetic inductance superconducting niobium nitride coplanar waveguide resonators. Appl. Phys. Lett. 118, 054001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gorman, J., Hasko, D. G. & Williams, D. A. Cost-qubit operation of an remoted double quantum dot. Phys. Rev. Lett. 95, 090502 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Crippa, A. et al. Electrical spin driving by g-matrix modulation in spin-orbit qubits. Phys. Rev. Lett. 120, 137702 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, J., Coish, W., Bulaev, D. & Loss, D. Spin decoherence of a heavy gap coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Article 

    Google Scholar
     

  • Piot, N. et al. A single gap spin with enhanced coherence in pure silicon. Nat. Nanotechnol. 17, 1072 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Venitucci, B. & Niquet, Y.-M. Gap-phonon interactions in quantum dots: results of phonon confinement and encapsulation supplies on spin-orbit qubits. Phys. Rev. B 102, 075415 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Benito, M., Mi, X., Taylor, J. M., Petta, J. R. & Burkard, G. Enter-output principle for spin-photon coupling in Si double quantum dots. Phys. Rev. B 96, 235434 (2017).

    Article 

    Google Scholar
     

  • Mi, X. et al. Circuit quantum electrodynamics structure for gate-defined quantum dots in silicon. Appl. Phys. Lett. 110, 043502 (2017).

    Article 

    Google Scholar
     

  • Harvey-Collard, P. et al. On-chip microwave filters for high-impedance resonators with gate-defined quantum dots. Phys. Rev. Appl. 14, 034025 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Benito, M., Petta, J. R. & Burkard, G. Optimized cavity-mediated dispersive two-qubit gates between spin qubits. Phys. Rev. B 100, 081412 (2019).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí

    Most Popular

    Recent Comments